

طريقك إلى انخجاح YOUR WAY TO SUCCESS

Reactor Design II

Week 4

Multiple Reactions and Semibatch Reactor

Saba A. Gheni, Ph.D.

Chemical Engineering Department

ghenis@tu.edu.iq

كلبة الهندسة - COLLEGE OF ENGINEERING

Introduction

- Chemical Reaction Engineering (CRE) involves the study of reaction rates, mechanisms, and reactor design.
- This lecture focuses on the role of semibatch reactors in maximizing selectivity and optimizing reaction conditions.

كلية الصندسة - COLLEGE OF ENGINEERING

Topics to be Addressed

- - Fundamentals of Semibatch Reactors
- - Mole Balances and Stoichiometry
- - Rate Laws and Reversible Reactions
- - Numerical Analysis using Polymath
- - Practical Examples and Case Studies

كلية الصندسة - COLLEGE OF ENGINEERING

Objectives

- By the end of this lecture, students will be able to:
- - Understand the operational principles of semibatch reactors.
- - Apply mole balances, rate laws, and stoichiometry to reactor design.
- Analyze reversible reactions in semibatch reactors.
- - Utilize numerical methods for reactor analysis.

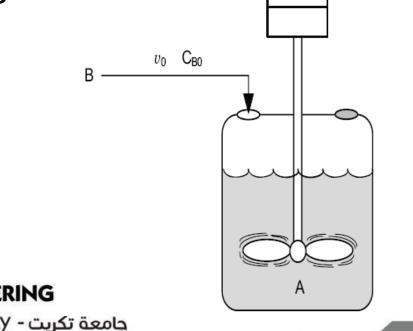
كلية الصندسة - COLLEGE OF ENGINEERING

Introduction

- Semibatch reactors are highly effective for controlling reaction dynamics, especially in liquid-phase reactions where selectivity is crucial.
- This session explores theoretical foundations, practical applications, and numerical approaches using Polymath for analysis.

كلية الصندسة - COLLEGE OF ENGINEERING

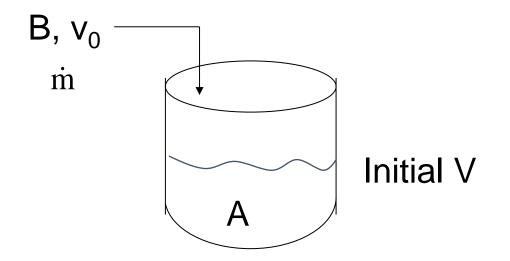
			and and a
Selectivity	in Multip	ole	
Reactions			طریقت إلی انجاح YOUR WAY TO SUCCESS
$A + B \xrightarrow{k_D} D$	$r_D = k_D C_A^2 C_A^2$	C_B (Desired)	
$A + B \xrightarrow{k_U} U$	$r_U = k_U C_A C_A$	C_B^2 (Undesired)	
	Selectivity	Yield	
Instantaneous	$S_{D/U} = r_D/r_U$	$Y_D = r_D / - r_A$	
Overall	$\hat{S}_{D/U} = F_D/F_U$	$\hat{Y}_D = F_D / (F_{A0} - F_A)$	
$S_{D/U} = \frac{r_D}{r_U} = \frac{k_D C}{k_u C}$	$\frac{C_A^2 C_B}{C_A C_B^2} = \frac{k_D C_A}{k_U C_B}$		~ .


كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

^b Keep C_A high and C_B low.

- Semibatch reactors can be very effective in maximizing selectivity in liquid phase reactions.
- The reactant that starts in the reactor is always the limiting re:


COLLEGE OF ENGINEERING

طريقك إلى الخبار OUR WAY TO SUCCESS

Semibatch reactors

 $A + B \rightarrow C + D$

Liquid level and volume increase

كلية الهندسة - COLLEGE OF ENGINEERING

1) Mass Balance:

$$\frac{dm}{dt} = \dot{m}$$

$$\dot{m} = \upsilon_0 \rho_0 \quad and \quad m = V \rho_0$$

$$\frac{dm}{dt} = \rho_0 \frac{dV}{dt} = \rho_0 \upsilon_0$$

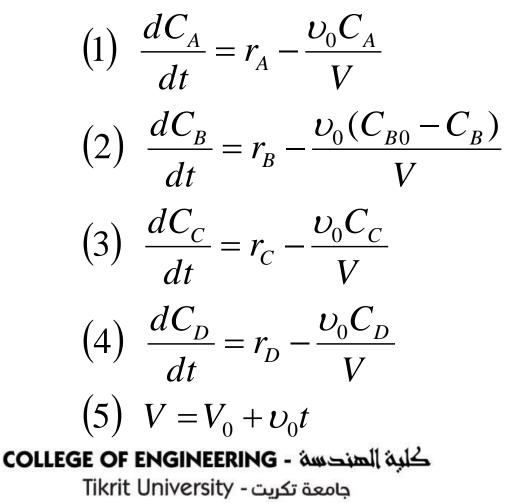
$$\frac{dV}{dt} = \upsilon_0$$

$$t = 0 \quad V = V_0 \qquad V = V_0 + \upsilon_0 t$$
COLLEGE OF ENGINEERING - $\dot{\omega}$

Semibatch Reactors 1) Mole Balance on Species A: [in] - [out] + [gen] = [acc] $0 - 0 + r_A V = \frac{dN_A}{dt}$ $\frac{dN_A}{dt} = \frac{d[C_A V]}{dt} = V \frac{dC_A}{dt} + C_A \frac{dV}{dt}$ $\frac{dV}{dt} = v_0$ $\frac{dC_A}{dt} = r_A - \frac{\upsilon_0 C_A}{V}$ كلبة الهندسة - COLLEGE OF ENGINEERING جامعة تكريت - Tikrit University

Semibatch Reactors 1) Mole Balance on Species B:

$$F_{B0} - 0 + r_B V = \frac{dN_B}{dt}$$


$$\frac{dN_B}{dt} = \frac{d[C_B V]}{dt} = V \frac{dC_B}{dt} + C_B \frac{dV}{dt}$$

$$F_{B0} = C_{B0}\upsilon_0 \qquad \frac{dV}{dt} = \upsilon_0$$
$$\frac{dC_B}{dt} = r_B + \frac{(C_{B0} - C_B)\upsilon_0}{V}$$

COLLEGE OF ENGINEERING - كلبة الهندسة Tikrit University جامعة تكريت

1) Mass and Mole Balance Summary

Semibatch Reactors 2) Rate Laws (6) r_A

$$(6) \quad r_A = kC_A C_B$$

3) Stoichiometry

$$\frac{-r_{A}}{1} = \frac{-r_{B}}{1} = \frac{r_{C}}{1} = \frac{r_{D}}{1}$$
(7) $r_{B} = r_{A}$

$$C_{A0}, V_0, v_0, k, C_{B0}$$

(8)
$$r_{C} = -r_{A}$$

(9) $r_{D} = -r_{A}$
(10) $X = \frac{N_{A0} - N_{A}}{N_{A0}}$
(11) $N_{A0} = C_{A0}V_{0}$
(12) $N_{A} = C_{A}V$

كلبة الهندسة - COLLEGE OF ENGINEERING

POLYMATH Report

Ordinary Differential Equations

Calculated values of DEQ variables

	Variable	Initial value	Minimal value	Maximal value	Final value
1	Са	0.05	7.731E-06	0.05	7.731E-06
2	Сао	0.05	0.05	0.05	0.05
3	Cb	0	0	0.0125077	0.0125077
4	Cbo	0.025	0.025	0.025	0.025
5	Cc .	0	0	0.0121468	0.0083256
6	Cd	0	0	0.0121468	0.0083256
7	k	2.2	2.2	2.2	2.2
8	ra	0	-0.0001644	0	-2.127E-07
9	rate	0	0	0.0001644	2.127E-07
10	t	0	0	500.	500.
11	V	5.	5.	30.	30.
12	vo	0.05	0.05	0.05	0.05
13	Vo	5.	5.	5.	5.
14	Х	0	0	0.9990722	0.9990722

Differential equations

$$1 d(Ca)/d(t) = ra - vo*Ca/V$$

$$3 d(Cc)/d(t) = -ra-vo*Cc/V$$

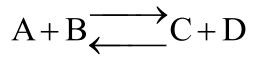
$$4 d(Cd)/d(t) = -ra-vo*Cd/V$$


Explicit equations

- 1 vo = 0.05 2 Vo = 5 3 V = Vo+vo*t 4 k = 2.2 5 Cbo = 0.025 6 ra = -k*Ca*Cb 7 Cao = 0.05 8 rate = -ra
- 9 X = (Cao*Vo-Ca*V)/(Cao*Vo)

كلية العندسة - COLLEGE OF ENGINEERING

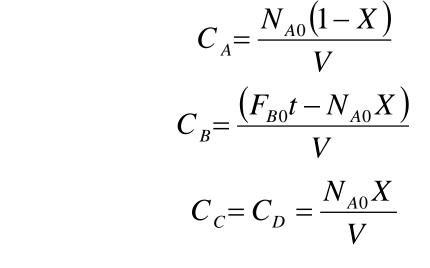
طريقك إلى الحجا



كلية الهندسة - COLLEGE OF ENGINEERING

Equilibrium Conversion in Semibatch Reactors with Reversible Reactions

Consider the following reaction:



Everything is the same as for the irreversible case, except for the rate law:

$$-r_A = k_A \left[C_A C_B - \frac{C_C C_D}{K_C} \right]$$

كلية الهندسة - COLLEGE OF ENGINEERING

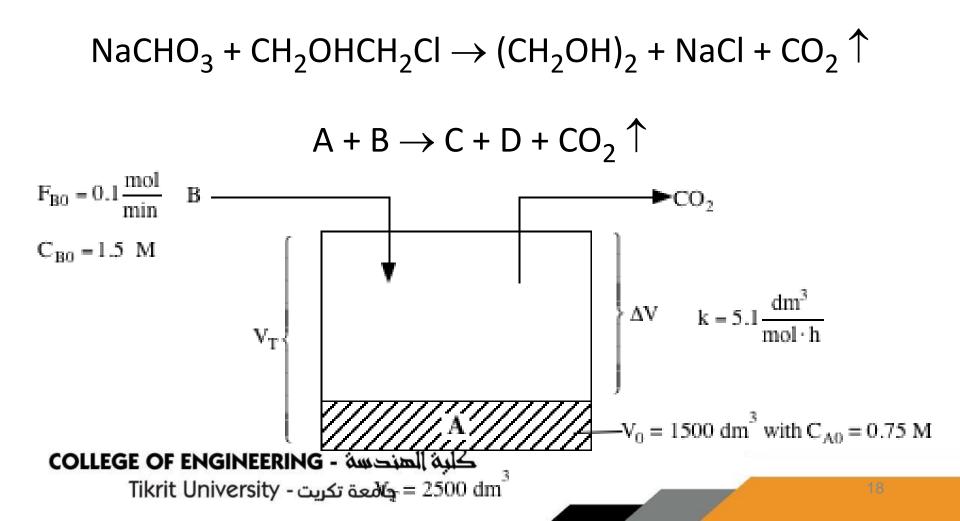
Equilibrium Conversion in Semibatch Reactors with Reversible Reactions

At equilibrium, $-r_A = 0$ then

$$K_{C} = \frac{C_{Ce}C_{De}}{C_{Ae}C_{Be}} = \frac{N_{Ce}N_{De}}{N_{Ae}N_{Be}} = \frac{N_{A0}X_{e}^{2}}{(1 - X_{e})(F_{B0}t - N_{A0}X_{e})}$$

X_e changes with time. **COLLEGE OF ENGINEERING - كلبة الهندسة** Tikrit University جامعة تكريت

Where:



17

Example 1:Semibatch Reactors

Sodium Bicarbonate + Ethylene Chlorohydrin \rightarrow Ethylene Glycol + NaCl + CO₂1

Example 1:Semibatch Reactors

Semibatch Reactors in terms of Moles $A + B \rightarrow C + D + CO_2$

Mole Balances

$$A \qquad (1) \quad \frac{dN_a}{dt} = r_A V$$

$$B \qquad (2) \quad \frac{dN_b}{dt} = F_{B0} + r_B V$$

$$C \qquad (3) \quad \frac{dN_c}{dt} = r_C V$$

$$D \qquad (4) \quad N_D = N_C$$

$$CO_2 \qquad 0 = -F_{CO_2} + r_{CO_2} V$$

$$(5) \quad F_{CO_2} = r_{CO_2} V$$

$$-r_A = -r_B = r_C = r_D = r_{CO_2}$$

كلية المندسة - COLLEGE OF ENGINEERING جامعة تاريك State On Conserve

مريقت إلى الذهاج مريقت إلى الذهاج مريقت إلى الذهاج

Rate Laws

(6)
$$\frac{dV}{dt} = v_0 - v_{CO_2}$$

(7)
$$v_{CO_2} = \frac{F_{CO_2}MWCO_2}{RHO}$$

(8)
$$MW = 44$$

(9)
$$RHO = 1000$$

(10)
$$C_a = N_A/V$$

(11)
$$C_B = N_B/V$$

(12)
$$r_A = -kC_A C_B$$

(13)
$$X = \frac{N_{a0} - N_a}{N_{a0}}$$

(14)
$$N_{a0} = V_0 C_{a0}$$

COLLEGE OF ENGINEERING - كلبة الهندسة Tikrit University - جامعة تكريت Rest of the Polymath Statements Similar to Concentration Program

Semibatch: Moles, Na, Nb, etc.

POLYMATH Report

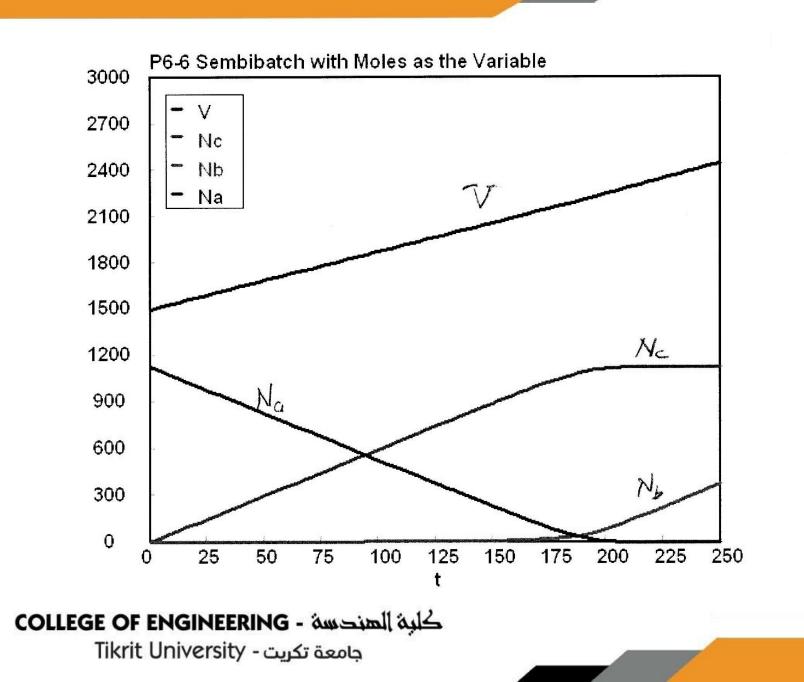
Ordinary Differential Equations

Calculated values of DEQ variables

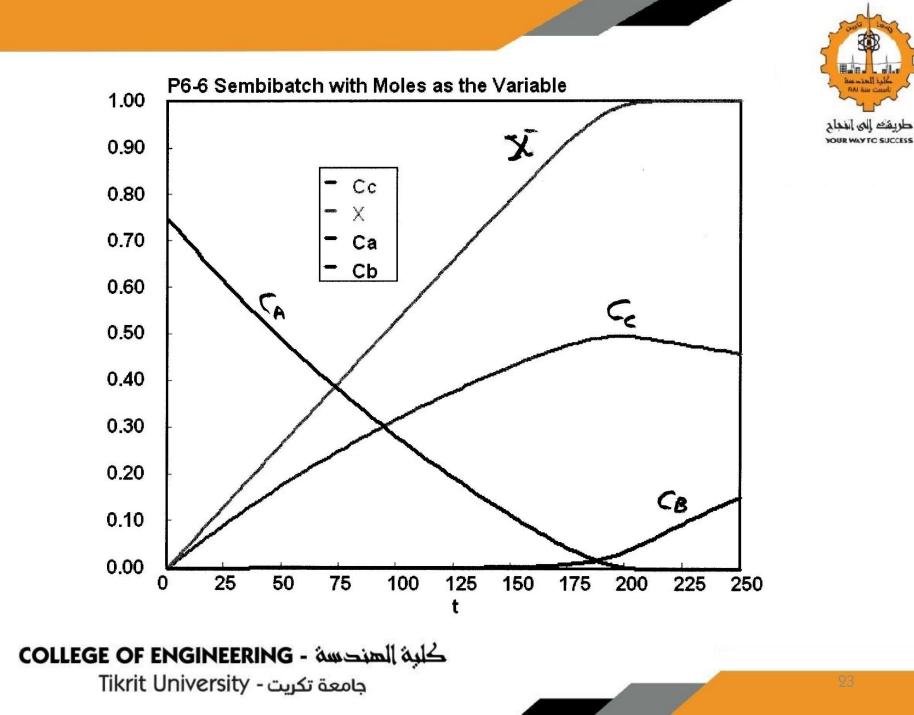
	Variable	Initial value	Minimal value	Maximal value	Final value
1	Ca	0.75	8.845E-14	0.75	8.845E-14
2	Cao	0.75	0.75	0.75	0.75
3	Cb	0	0	0.15303	0.15303
4	Cbo	1.5	1.5	1.5	1.5
5	Cc	0	0	0.4967829	0.45909
6	Cd	0	0	0.4967829	0.45909
7	Fbo	6.	6.	6.	6.
8	FCO2	0	0	5.987114	1.692E-10
9	k	5.1	5.1	5.1	5.1
10	MWCO2	44.	44.	44.	44.
11	Na	1125.	2.167E-10	1125.	2.167E-10
12	Nao	1125.	1125.	1125.	1125.
13	Nb	0	0	375.	375.
14	Nc	0	0	1125.	1125.
15	ra	0	-0.0039389	0	-6.903E-14
16	rho	1000.	1000.	1000.	1000.
17	t	0	0	250.	250.
18	V	1500.	1500.	2450.5	2450.5
19	vCO2	0	0	0.263433	7.443E-12
20	vo	4.	4.	4.	4.
21	Х	0	0	1.	1.

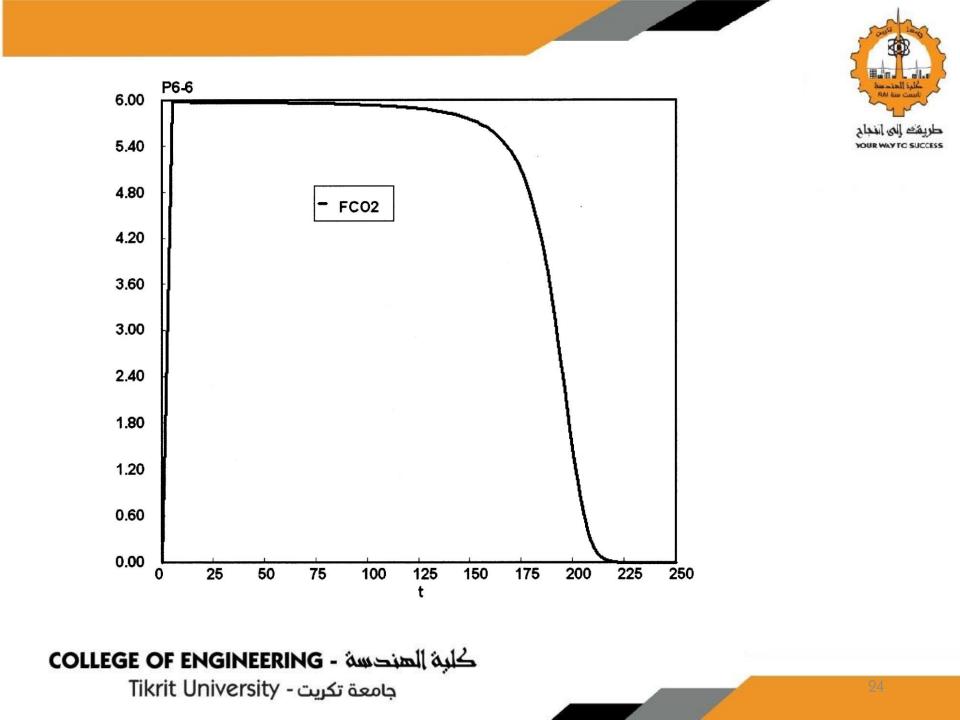
كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University


Differential equations

1 d(V)/d(t) = vo-vCO2 2 d(Nc)/d(t) = -ra*V 3 d(Nb)/d(t) = Fbo+ra*V 4 d(Na)/d(t) = ra*V


Explicit equations


1	Cbo = 1.5
2	Fbo = 6
3	Cao = 0.75
4	Cc = Nc/V
5	Nao = 1125
6	X = (Nao-Na)/Nao
7	k = 5.1
8	rho = 1000
9	MWCO2 = 44
10	Ca = Na/V
11	Cb = Nb/V
12	ra = -k*Ca*Cb
13	vo = Fbo/Cbo
14	FCO2 = -ra*V
15	vCO2 = FCO2*MWCO2/rho
16	Cd = Cc

P6-6 Semibatch: Concentrations C_A, C_B, C_C

POLYMATH Report

Ordinary Differential Equations

Calculated values of DEQ variables

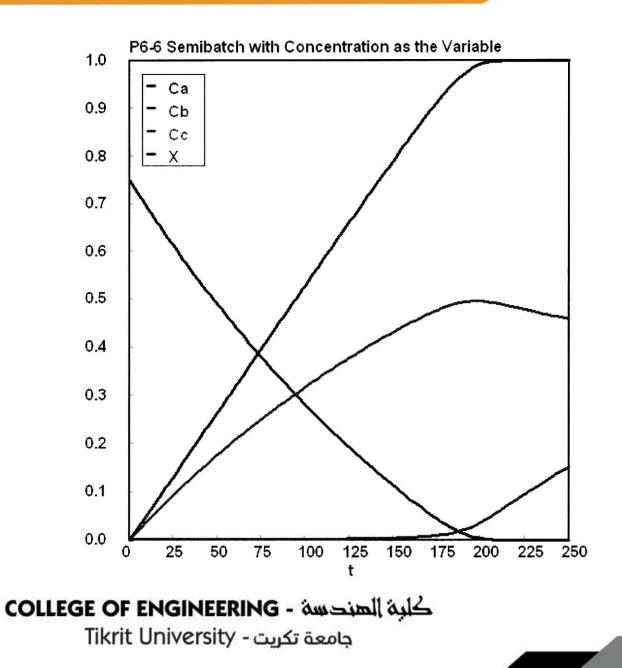
	and the second se	Initial value		Maximal value	Final value
1	Ca	0.75	8.846E-14	0.75	8.846E-14
2	Cao	0.75	0.75	0.75	0.75
3	СЬ	0	0	0.15303	0.15303
4	Cbo	1.5	1.5	1.5	1.5
5	Cc	0	0	0.496826	0.45909
6	CC	0	0	0.496827	0.45909
7	Cd	0	0	0.496827	0.45909
8	Fbo	6.	6.	6.	6.
9	FCO2	0	0	5.987132	1.692E-10
10	k	5.1	5.1	5.1	5.1
11	MWCO2	44.	44.	44.	44.
12	Na	1125.	2.168E-10	1125.	2.168E-10
13	Nao	1125.	1125.	1125.	1125.
14	NC	0	0	1125.	1125.
15	Nc	0	0	1125.	1125.
16	ra	0	-0.0039413	0	-6.904E-14
17	rate	0	0	0.0039413	6.904E-14
18	rho	1000.	1000.	1000.	1000.
19	t	0	0	250.	250.
20	V	1500.	1500.	2450.5	2450.5
21	vCO2	0	0	0.2634338	7.444E-12
22	vo	4.	4.	4.	4.
23	Vo	1500.	1500.	1500.	1500.
24	х	0	0	1.	1.

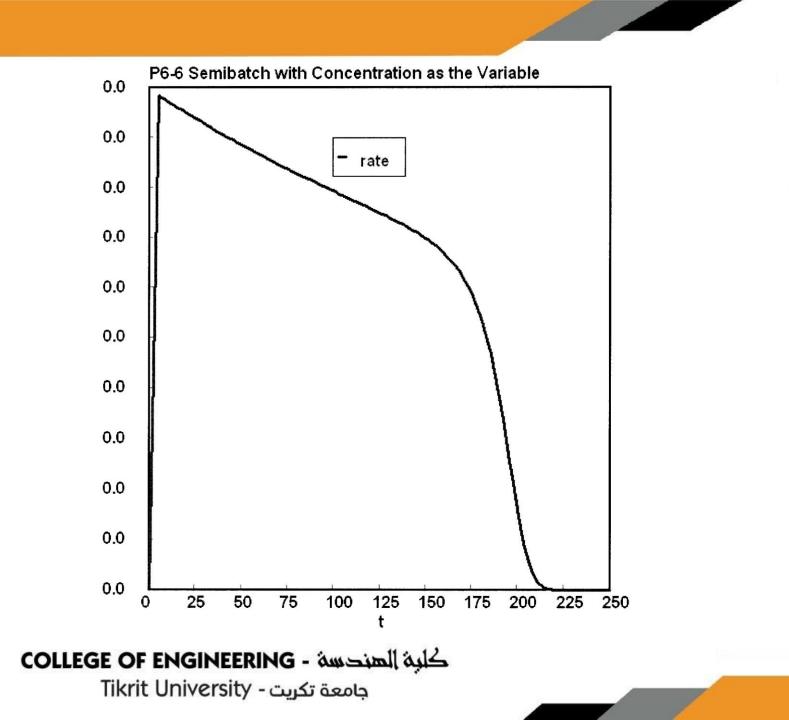
كلية الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

Differential equations

 $1 \ d(Ca)/d(t) = ra + ((vo-vCO2) / V) * (-Ca)$ $2 \ d(Cb)/d(t) = ra + vo*Cbo/V + ((vo-vCO2) / V) * (-Cb)$ $3 \ d(Cc)/d(t) = -ra + ((vo-vCO2) / V) * (-Cc)$ $4 \ d(V)/d(t) = vo-vCO2$


Explicit equations


- Cd = Cc
 Fbo = 6
 Cao = 0.75
 Vo = 1500
 Na = Ca*V
 k = 5.1
 ra = -k * Ca * Cb
 Nao = Cao*Vo
 rate = -ra
- 10 rho = 1000

rho=1000g per dm^3

- 11 MWCO2 = 44
- 12 FCO2 = ra*V
- 13 NC = Nao-Na
- 14 Cbo = 1.5
- 15 vo = Fbo / Cbo
- 16 vCO2 = MWCO2*FCO2/rho
- 17 CC = NC/V
- 18 Nc = Cc * V
- 19 X = 1 Ca * V / (Cao*Vo)

YOUR WAY TO SUCCESS

Three Forms of the Mole Balances applied to Semibatch Reactors:

1. Molar Basis
$$\frac{dN_A}{dt} = r_A V$$
$$\frac{dN_B}{dt} = F_{B0} + r_B V$$

2. Concentration
$$\frac{dC_A}{dt} = r_A - C_A \frac{\upsilon_0}{V} \qquad \frac{dN_A}{dt} = r_A V$$
Basis
$$\frac{dC_B}{dt} = r_B + (C_{B0} - C_B) \frac{\upsilon_0}{V} \qquad \frac{dN_B}{dt} = F_{B0} + r_B V$$

3. Conversion
$$\frac{dX}{dt} = \frac{-r_A V}{N_{A0}}$$
COLLEGE OF ENGINEERING - A set of the set of the

Consider the following elementary reaction:

-r_A=kC_AC_B

 $A+B \rightarrow C+D$

The combined Mole Balance, Rate Law, and **Stoichiometry** may be written in terms of number of moles, conversion, and/or concentration:

Conversion	Concentration	No. of Moles
$\frac{dX}{dt} = \frac{k(1-X)(N_{Bi} + F_{B0}t - N_{A0}X)}{V_0 + v_0 t}$	$\frac{dC_A}{dt} = r_A - C_A \frac{\upsilon_0}{V}$	$\frac{dN_A}{dt} = r_A V$
	$\frac{dC_B}{dt} = r_A + \left(C_{B0} - C_B\right)\frac{\nu_0}{V}$	$\frac{dN_B}{dt} = F_{A0} + r_B V$
لمنحسة - COLLEGE OF ENGINEERING جامعة تكريت - Tikrit University	كلية ا	29

Polymath Equations

طريمه الله اللع

Conversion	Concentration	Moles
d(X)/d(t) = -ra*V/Nao	d(Ca)/d(t) = ra - (Ca*vo)/V	d(Na)/d(t) = ra*V
ra = -k*Ca*Cb	d(Cb)/d(t) = rb + ((Cbo-Cb)*vo)/V	$d(Nb)/d(t) = rb^*V + Fbo$
Ca = Nao*(1 - X)/V	ra = -k*Ca*Cb	ra = -k*Ca*Cb
Cb = (Nbi + Fbo*t - Nao*X)/V	rb = ra	rb = ra
V = Vo + vo*t	V = Vo + vo*t	V = Vo + vo*t
Vo = 100	Vo = 100	Vo = 100
vo = 2	vo = 2	vo = 2
Nao = 100	Fbo = 5	Fbo = 5
Fbo = 5	Nao = 100	Ca = Na/V
Nbi = 0	Cbo = Fbo/vo	Cb = Nb/V
k = 0.1	k = 0.01	k = 0.01
	Na = Ca*V	
	X = (Nao-Na)/Nao	

كلبة المندسة - COLLEGE OF ENGINEERING

Are you ready?

كلبة الهندسة - COLLEGE OF ENGINEERING

Summary

- In this lecture, we discussed:
- - The unique features and applications of semibatch reactors.
- - How to maximize selectivity in multiple reactions.
- Key concepts: mole balances, rate laws, and stoichiometry.
- - Numerical approaches for analyzing semibatch reactor performance.
- Semibatch reactors are versatile tools in chemical engineering, enabling precise control over reaction dynamics for optimized outcomes.

كلية الصندسة - COLLEGE OF ENGINEERING